An Approach to Predicting Fatigue Crack Growth Under Mixed-Mode Loading Based on Improved Gaussian Process

نویسندگان

چکیده

This paper proposes an approach to predicting fatigue crack growth under mixed-mode loading based on improved Gaussian process. In terms of analyzing the theoretical background for growth, a corresponding finite element model is built generate sufficient simulation data, which utilized obtain key parameters (e.g., stress intensity factor) And then, process achieved meet condition that factor nonlinear continuous change in especially loading. Following, idea local sample densification method implemented improve generation according simplified path. Based above investigation, prediction using finished, subsequently verified through test data lower bainite steel (SCM435) material. The results show proposed has better computational accuracy and efficiency than traditional

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Model of Crack Growth under Mixed Mode Loading

In this paper, in order to predict the crack growth trajectory and to evaluate the SIF under mixed modes (I & II), one proposes a new finite element program for crack growth using the source code written in FORTRAN. The fin ite element mesh is generated using an advancing front method, where the generation of the background mesh and the construction of singular elements are also added to this d...

متن کامل

Threshold stress intensity factor and crack growth rate prediction under mixed-mode loading

A new mixed-mode threshold stress intensity factor is developed using a critical plane-based multiaxial fatigue theory and the Kitagawa diagram. The proposed method is a nominal approach since the fatigue damage is evaluated using remote stresses acting on a cracked component rather than stresses near the crack tip. An equivalent stress intensity factor defined on the critical plane is proposed...

متن کامل

Short and Large Crack , Mixed - Mode Fatigue - Crack Growth Thresholds in Ti - 6 Al - 4 V

There are few experimental results to date describing the crack-propagation threshold behavior of short fatigue cracks under multiaxial loading conditions. To address this need, in the present study, the variation in mixed-mode, high-cycle fatigue-crack growth thresholds with crack size and shape are reported for a Ti-6Al-4V turbine blade alloy, heat treated to two widely different microstructu...

متن کامل

Analyses of Fatigue and Fatigue-crack Growth under Constant- and Variable-amplitude Loading

Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily “crack growth” from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using “small-crack...

متن کامل

Effect of Boundary Condition on Pre-Existing Crack Under Fatigue Loading

In this paper, the present investigation has been conducted keeping in mind some of the problems concerning the crack propagation direction and growth under constant loading in an inclined crack geometry. The present studies mainly focused on the development and modifications in the crack growth criterion to account the biaxial, shear loading and number of stress terms. Existing criteria for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3050132